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CHAPTER I

INTRODUCTION

As the demand for more precise control of material parameters such

as thermal expansion, directional strength and stiffness, and impact and

fatigue resistance in structures has increased, designers have begun to

move away from metal components and are now attempting to "tailor" com-

posite materials to suit their particular needs. Thus, the use of fiber-

reinforced composites such as graphite/epoxy and glass/epoxy has increased

rapidly over the past ten years.

While an extensive effort during the past decade has been devoted

to studying the above topics, it has only been recently that viscoelastic,

i.e., time-dependent behavior of composites has been investigated. The

viscoelastic behavior of a material can be of paramount importance when

a composite component is subjected to repeated loading cycles or sub-

stantial loads at moderately high temperatures for long periods of time.

Environmental cycling or fluctuations of the ambient temperature and/or

relative humidity can also have considerable influence on the performance

of the composite. Under such conditions, the internal stress distribu-

tions and overall strain of the composite could ultimately change enough

with time to cause failure of the component. Alternatively, the stress

state could also change so as to relieve high stress states in certain

areas of the composite, preventing failure of the component.

It is not possible to accurately simulate environmental or loading
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cycles with a time-independent analysis. This approach does not realisti-

cally model the situation since it neglects any redistribution or changes

in the internal stress state with time. And, since the distribution of

stresses can change one way or another with time, the ability to predict

these changes can be extremely important.

As an example, graphite/epoxy or other composite components

on aircraft are often exposed to significant environmental changes.

Whether these are detrimental to the performance of the composite or not

can be determined by means of a time-dependent analysis. Spacecraft and

satellite components must be dimensionally stable throughout their service

lifetime, to preserve the functional integrity of the optical or electronic

hardware which they carry. During fabrication, storage, and launch, the

satellite sees a variety of environmental fluctuations, which cause di-

mensional changes to the structure and the instruments it carries. To

accurately determine these dimensional changes, a time-dependent analysis

should be used. Automotive components such as driveshafts and engine

motor mounts must be able to withstand sustained loading and/or cyclic

loadings for long periods of time. Whether the composite is capable of

such performance may also be determined by means of a time-dependent

analysis.

In order to experimentally characterize the time-dependent behavior

of a composite material, a number of tests must be conducted. There are

many factors (e.g., temperature, moisture, loading rate, and stress level)

that affect the viscoelastic properties of a composite. Thus, an exten-

sive amount of testing must be undertaken to determine how and to what

extent each of these factors will affect the composite. While a particu-
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lar composite material system might be adequately characterized by such

a testing program, if a designer wishes to use a different fiber-matrix

combination, he must re-evaluate all the properties determined in the

previous testing program. This can be a problem since there are numer-

ous fiber-matrix combinations available to a designer.

To overcome this difficulty, a micromechanics analysis and asso-

ciated computer code has been developed in the present study which in-

cludes time-dependent effects. By inputing the appropriate constituent

viscoelastic properties to the program, the designer can try any combin-

ation of fiber and matrix material, to determine if that composite will

satisfy his need. Since only the individual constituent properties need

to be determined experimentally, this analysis becomes extremely cost

effective considering the amount of time and experimental testing saved

by not having to evaluate all fiber-matrix combinations. Also, most

fibers do not exhibit time-dependence. Therefore, only the candidate

matrix materials need be tested.

To model the various fiber-matrix combinations, the analysis uses

a finite element model capable of simulating a unidirectional composite

subjected to any combination of longitudinal and transverse normal load-

ings, as well as hygrothermal loading. Time-independent nonlinear

(elastoplastic) material behavior is included, as is a creep formulation

which uses stresses as the independent state variable. The program also

contains two failure criteria, viz., an octahedral shear stress criterion

and a hydrostatic criterion.

Since the effects of temperature and moisture are included in the

analysis, it is possible to examine the internal stress state of a com-
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posite as a function of time after curing a laminate, as well as during

external loading. The analysis can also model any arbitrary multiple

step loading (stress reversal, cycling, etc.) as well as recovery.

Some numerical examples of the capability are presented in Chapter V.

SI.



CHAPTER II

LITERATURE SURVEY

Whether considering creep or relaxation there are numerous theories

available, each having its strong and weak points. A review of various

theories will be presented in this chapter and the relative advantages

and disadvantages of each will be discussed. Before this discussion be-

gins, a few of the terms, viz., creep, recovery, and relaxation will be

briefly defined.

In a creep test, stress is the independent state variable, while in

a relaxation test, strain is the independent state variable. Recovery

occurs when all of the stress is removed after a creep test. There are

usually three stages of creep: primary, during which a rapid decrease

of the creep rate occurs, secondary, where the creep rate is more or less

constant, and tertiary, where a rapid increase in creep rate occurs. The

tertiary stage of creep is usually brief, leading quickly to failure and

is not ef much use in design. Illustrative examples of creep-recovery

and relaxation are shown in Figures la and lb, respectively. The three

stages of creep are shown in Figure 1c.

Empirical Approaches

Observation of the time-dependence or creep of metals was first

reported around the mid-nineteenth century [1]. Early investigators

used an empirical approach in dealing with the observed time-dependence
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and the three stages of creep
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of metals [1,2]. Many equations were written which yielded good agree-

ment with experimental data for uniaxial creep at low stresses under a

constant externally applied load. These equations were found to be ade-

quate to describe either primary or secondary stages of creep, but rarely

both. Difficulties arose when investigators tried to describe combined

states of stress using this empirical approach. The multiaxial stress

experiments necessary were not easily performed, and the mathematical

representation became more involved than those for uniaxial creep. Also,

if the situation involved a changing stress history or a loading that was

a function of time, the equation for the creep rate had to be a function

of strain as well as the applied stress in order to fit the experimental

data. This fact, along with the difficulty of multiaxial representation,

caused many to realize that a more rigorous approach was necessary.

Mechanical Models

A number of investigators have utilized mechanical models to repre-

sent the creep behavior of materials [1,3]. By assembling springs and

dashpots in a variety of configurations, they have been able to describe

many different types of materials; from stainless steels, which exhibit

a great deal of secondary creep, to polymers, which do not. These models

become extremely difficult to visualize, much less formulate, when a

combined stress state is considered.

Differential Operator Form

Both of the time-dependent stress-strain formulations just discus-

sed were primarily phenomenological, models being constructed and eqtu-
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tions written to describe specific experimental data. In creep, actual

values of strain (response) depend upon the entire stress (input) his-

tory and not Just the current value of stress. That is, the creep be-

havior of most materials, composites included, are affected by the

total loading history. In order to account for this, a more mathematical

representation is needed.

One of these mathematical forms is the differential operator method

[1,3]. A differential equation is written

Pa f  (1)

where P and Q are a series of linear differential operators with respect

to time. By choosing the proper terms in P and Q and excluding others,

any material behavior may be represented. It can be shown that Eq. (1)

can be reduced to give a representation of any of the mechanical model

combinations. A generalization to multiaxial stress states is given by

Findley and Lai [1].

A common solution technique for Eq. (1) utilizes the Correspondence

Principle [1]. This method utilizes a known linearly elastic (time-inde-

pendent) solution, selected in accordance with the particular problem. The

Laplace transform of this solution is then taken to obtain equations of

state in the imaginary or s-domain. Next, a substitution is made for

the modulus and Poisson's ratio, e.g., E - sE(s) and v - sv(s), so that

these quantities will become time-dependent terms when the inverse Lap-

lace transform is taken. Following this substitution, the desired quan-

tities are solved for. The solution in the real (time) domain is then

generated by taking the inverse Laplace transform of the resulting equa-

tion. The limitation in using this solution technique is that Eq. (1) is
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of metals [1,21. Many equations were written which yielded good agree-

ment with experimental data for uniaxial creep at low stresses under a

constant externally applied load. These equations were found to be ade-

quate to describe either primary or secondary stages of creep, but rarely

both. Difficulties arose when investigators tried to describe combined

states of stress using this empirical approach. The multiaxial stress

experiments necessary were not easily performed, and the mathematical

representation became more involved than those for uniaxial creep. Also,

if the situation involved a changing stress history or a loading that was

a function of time, the equation for the creep rate had to be a function

of strain as well as the applied stress in order to fit the experimental

data. This fact, along with the difficulty of multiaxial representation,

caused many to realize that a more rigorous approach was necessary.

Mechanical Models

A number of investigators have utilized mechanical models to repre-

sent the creep behavior of materials [1,31. By assembling springs and

dashpots in a variety of configurations, they have been able to describe

many different types of materials; from stainless steels, which exhibit

a great deal of secondary creep, to polymers, which do not. These models

become extremely difficult to visualize, much less formulate, when a

combined stress state is considered.

Differential Operator Form

Both of the time-dependent stress-strain formulations just discus-

sed were primarily phenomenological, models being constructed and equa-
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tions written to describe specific experimental data. In creep, actual

values of strain (response) depend upon the entire stress (input) his-

tory and not just the current value of stress. That is, the creep be-

havior of most materials, composites included, are affected by the

total loading history. In order to account for this, a more mathematical

representation is needed.

One of these mathematical forms is the differential operator method

[1,3]. A differential equation is written

Pa = QE (1)

where P and Q are a series of linear differential operators with respect

to time. By choosing the proper terms in P and Q and excluding others,

any material behavior may be represented. It can be shown that Eq. (1)

can be reduced to give a representation of any of the mechanical model

combinations. A generalization to multiaxial stress states is given by

Findley and Lai [1].

A common solution technique for Eq. (1) utilizes the Correspondence

Principle [1]. This method utilizes a known linearly elastic (time-inde-

pendent) solution, selected in accordance with the particular problem. The

Laplace transform of this solution is then taken to obtain equations of

state in the imaginary or s-domain. Next, a substitution is made for

the modulus and Poisson's ratio, e.g., E = sE(s) and v - sv(s), so that

these quantities will become time-dependent terms when the inverse Lap-

lace transform is taken. Following this substitution, the desired quan-

tities are solved for. The solution in the real (time) domain is then

generated by taking the inverse Laplace transform of the resulting equa-

tion. The limitation in using this solution technique is that Eq. (1) is

: . ., . .: .. . } i 
.

_ ~~....... - -..: . .... --.. . . .-. ,, I I I, ,
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now restricted to the linear viscoelastic range since linearly elastic

(time-independent) equations are used. This restriction means that

the solution is only applicable to a material which is subjected to

stresses (or strains) that are sufficiently low. This restriction will

be discussed in more detail in the next chapter. Of course, it is possi-

ble to find a solution without using the Correspondence Principle, but

the differential equations can become cumbersome and extremely difficult

to solve.

Integral Representation

Another and more widely used mathematical model is the integral

representation [1,3-81. The advantages of this method over the differ-

ential operator form are the relative ease of incorporating measured ex-

perimental data and the inclusion of temperature and moisture effects.

For these reasons this method has been very appealing to many investi-

gators, and consequently is becoming increasingly popular.

Probably the simplest of the integral representations is the

Boltzmann superposition principle [1]. It states that the sum of the

strain (stress) outputs caused by several stress (strain) inputs equals

the sum of the strain (stress) outputs caused by each stress (strain)

input individually. Thus, this representation is restricted to linear

viscoelastic behavior, and as discussed before, can only be used when

the applied stresses (or strains) are sufficiently low.

A slightly more general integral form was proposed by Leaderman [9].

This representation, referred to as the modified superposition princi-

ple, modified the Botlzmann superposition integral slightly so that
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stress-dependence could be accounted for. For instance, the creep com-

pliance is usually divided into two portions, i.e., a time-dependent

portion and a time-independent portion. While this method allows for

the stress-dependence of the time-dependent portion, it does not for the

time-independent portion. This method has been useful; however, it

lacks the complete generality necessary to describe nonlinear behavior.

Lai and Findley [101 have recently used the modified superposition

principle in conjunction with other theories to represent the nonlinear

viscoelastic behavior of aluminum. In this study, multiaxial creep

tests were run to verify their hybrid theory with experimental data.

Excellent-to-fair agreement was obtained between the measured data and

the predictions based on constant-stress tests. This relatively new

theory, while having potential applications, has not been applied to

many different types of materials. Also, it is somewhat empirical in

nature and requires several experimental tests to obtain the parameters

used in the constitutive equations.

Multiple integral representations [5,6] are very attractive in

that they are completely general in nature and can account for any de-

gree of nonlinearity. Hence, they are not limited to any one type or

class of materials. The difficulty with this method arises when the

material contains a high &egree of nonlinearity, making simplification

of many terms impossible. Without such simplification, the experimental

requirements of this theory are overwhelming and the kernels, i.e., the

stress-,temperature-, moisture-dependent parameters in the equations,

extremely difficult to evaluate experimentally.

Schapery has developed much simpler, single-integral nonlinear con-



stitutive equations, derived from thermodynamic theory in terms of

strains [7] or stresses [8]. These equations contain kernels which

are written in terms of linear viscoelastic properties, and are much

easier to evaluate than those in the multiple integral forms. In fact,

the equations can be reduced to the Boltzmann superposition principle by

equating certain terms to one; and experimental determination of the

kernels requires only uniaxial creep tests followed by a recovery period.

For these reasons, the theory developed by Schapery [8] was chosen

for use in the present analysis. This decision was based upon the facts

that the number of tests required to obtain the necessary experimental

parameters is minimal, and the generality present in the constitutive

equations is adequate to describe nonlinear viscoelastic behavior.

In summary, while the empirical approaches are useful, they do not

readily allow for the incorporation of temperature or moisture effects.

On the other hand, mechanical models are very difficult if not impossible

to visualize for a combined stress state. Differential operator methods

rely upon linear solution techniques, which restrict the applicable

range of solutions. Multiple integral representations can be extremely

difficult to evaluate experimentally.

As will be shown in Chapter IV, it is quite easy to incorporat-e

the measured material parameters into the equations derived by Schapery

[8]. Also, it has been demonstrated by Schapery (11] that for a multi-

axially stressed material, the properties can be expressed as a function

of the local octahedral shear stress in the material. This allows

one to completely characterize a material by a series of uniaxial tests.

In order to include the effects of temperature and moisture, one need
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simply repeat the above uniaxial tests for a range of constant temper-

ature and moisture levels, to determine the dependence of certain con-

stants in the constitutive equations upon these parameters.

A detailed description of the analysis method, utilizing the con-

stitutive equations developed by Schapery [8] in a finite element micro-

mechanical analysis, is given in the following chapter. Succeeding

chapters present some numerical results and conclusions based upon these

results.
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CHAPTER III

ANALYSIS METHOD

A Statement of Linearity

It is important to first examine the concept of linear viscoelastic

material behavior and its range of applicability, in order for nonlinear

viscoelastic constitutive equations to be meaningful.

While certain materials may behave in a linear manner up to some

relatively high stress level (for a fixed temperature, and for certain

composites, moisture content), others may be quite nonlinear in that

same stress range. In order to differentiate between linear and non-

linear behavior, a definition of linearity is necessary.

There are two criteria which must be met in order for material re-

sponse to be considered linear [1,12]. The first of these is the prop-

erty of homogeneity. This property, sometimes referred to as the pro-

portionality property, states that the material response is linearly

proportional to the input history. That is, if the stress (input) is

doubled, the strain response (output) is correspondingly doubled. This

can be written as

E{Co(t)- Cc{o(t)} (2)

where C is any constant, o(t) is the stress input function, and ef{ is

the material response based upon the entire history of a(t).

The second criterion is the superposition principle. This property

states that the response due to a multistep input of stress with time

is identical to the sum of the responses due to individual, independent
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stress inputs at corresponding times. This can he written as

Cfai(t) + 02(t) + . . c{O 1 (t)) + C{o2 (t)) + (3)

where al(t), a2 (t), ... represent any type of stress input history.

This second property can be demonstrated by an example. Assume

three identical pieces of material, each subjected to a different load-

ing history. Specimen A is subjected to a load input described by

Figure 2a. Specimen B by that of Figure 2b, and Specimen C by that of

Figure 2c. If the material behavior is linear viscoelastic, the super-

position principle states that the sum of the strain responses from the

loadings shown in Figures 2b and 2c will be identical to the response

from the loading shown in Figure 2a.

0 U

a +CY
1 2

W4 l C a 1

time, t time, t time, t

a) Stress input b) Stress input c) Stress input
history for history for history for
Specimen A Specimen B Specimen C

Figure 2. Plots of stress versus time for three different specimens

Many investigators assume linearity if a material satisfies the

homogenity principle alone, while in fact the material may be quite non-

linear. It can be shown 11,12] that if the material satisfies the super-t .. .. h
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position criterion, it will automatically satisfy homogenity, but the

opposite is not true. Thus, if a material is to be examined for linear

viscoelastic behavior, the superposition test must be applied.

Constitutive Equations

The single integral nonlinear viscoelastic constitutive equation

derived by Schapery [8) for an isotropic material under Isothermal con-

ditions and uniaxial loading can be written as

e(t) = g0D0o(t) +

gl t I AD(TV [ t) dT' (4)

0 dT'

where Do is the initial (time-independent) value of the compliance and

ADMV) is the transient (time-dependent) value of the compliance. Note

that AD() is a function of reduced time T. The reduced times are defined

as.
dt' d ' T, dt'(5Sand 'P'o (5)

0 a 0 c

The terms g0 , gj, g2 , and ac are all functions of stress and have cer-

tain thermodynamic significance [8]; for example, go, g1 , and g2 reflect

stress-dependence on Gibb's free energy while changes in a. signify

effects of both entropy production and free energy. The term a. in Eq.

(5) is also a function of temperature, and for certain composites, mois-

ture content. This factor tends to accelerate or decelerate the influence

of time, meaning that changes in temperature, moisture, or stress produce

the same output of events (with respect to some reference value), but at

a faster or slower rate.
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Multiaxial relationships as defined by Schapery [8] are somewhat

more complicated in that they allow for any degree of coupling between

the applied stresses. In the present analysis it is assumed that this

coupling (except Poisson effects) is of higher order and is neglected.

The constitutive equations used in the present analysis can be written

in the simple form

Cij(t) = Dijkl(t,T,M,a)Okl (6)

where Dijkl(t,T,M,o) is the time-dependent nonlinear creep compliance

tensor, and is a function of time, temperature, moisture, and applied

stress level.

In order to use Eq. (6) in a finite element analysis scheme, it be-

comes necessary to simplify the convolution integrals (Eq. 4) contained

in Dijkl.

In the current analysis an incremental procedure is used, all load-

ing, temperature, and moisture increments being applied in time-independ-

ent steps. That is, these increments are assumed to occur instantaneous-

ly, and to be held constant during succeeding time steps. Time-depend-

ent response is determined by the application of finite increments of

time; no increments of stress, temperature, or moisture are permitted

during a time increment. In other words, stress is a constant during

any time increment.

By substituting a(t) = oa (a constant value) and integrating, Eq.

(4) yields

c(t) - [g0D0 + g1g2AD(t/aO)]oa. (7)

Details of this integration are presented in Appendix A. Note that AD

is a function of the ratio of real time to the time shift factor a0.
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From Eq. (7), the nonlinear creep compliance for a constant applied

stress 0a is defined as
O (t)i g0 D0 + glg 2 AD(t/a.) (8)
cya

where the term g0D0 is the instantaneous (time-independent) portion and

the term g1g2 AD(t/a.) is the transient (time-dependent) portion of the

creep compliance.

As mentioned previously, no coupling between multiaxial loading is

assumed except for Poisson effects. If the material is isotropic (as is

typically the case of the matrix material in a composite), the creep

compliance tensor in Eq. (6) is simplified to three time-dependent terms,

two of which are independent.

The isotropic elastic constitutive equations for multiaxial loading,

written in tensorial form, are [13]

Ci = Oij - ckk6i (9)

where E is the elastic (Young's) modulus and v is Poisson's ratio. By

using Eq. (8) (for the special case of constant externally applied

stresses), making Poisson's ratio time-dependent, and substituting into

Eq. (9), the time-dependent constitutive equations (Eqs. 6) become

Cij(t) = D[l + v(t)]lij - Dv(t)okkcij (10)

* Eqs. (10) are valid for any isotropic, time-dependent material subject

to a constant externally applied load.

Method of Solution

In the present study, it was desired to model a unidirectional com-

posite material by using a finite element micromechanics analysis. A
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finite element grid of the internal structure of a composite is construc-

ted, allowing the examination of the internal stresses in a composite

due to a variety of external conditions. The cross-sectional arrange-

ment of fibers in most unidirectional fibrous composites typically tends

to be random. However, there is usually little loss of generality in

the analysis if some periodicity is assumed, as shown in Figure 3.

Y(2)

•~ z(3)

Figure 3. Fiber packing arrangement of a unidirectional composite

A detailed discussion of the various possible types of fiber packing, and

the ramifications of assuming each type, are presented by Miller and Ad as

[141 and will not be repeated here. In the present analysis, the fibers

are assumed to be arranged in a rectangular array, as shown in Figure 4a.

Since this particular type of packing is assumed, symmetry arguments can

be used (141, requirIg only one quarter of a fiber to be modeled, as

* shown in Figure 4b.

In order to simula e a small continuum in a rectangular array of

fibers in a composite, certain boundary conditions must be imposed.
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Figure 4. Unit cell for the finite element analysis
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For descriptive purposes, a coordinate system has been set up in Figure

4b with the origin located in the lower left hand corner. The right hand

boundary corresponding to x-a is assumed to displace parallel to the

original boundary. That is, all displacements in the x-direction along

the boundary xi-a are equal in magnitude. Similarly, all displacements

in the y-direction along the boundary y=b are considered to be equal.

Both of these boundaries, xfa and y=b, are allowed to move freely in the

y- and x-directions, respectively. The remaining two boundaries, x=O

and y=O, are assumed to be fixed in the x- and y-directions, respectively;

yet they are free to move in the y- and x-directions, respectively. Under

the conditions of generalized plane strain, which will be discussed

shortly, all out-of-plane normal strains cz are assumed to be the same.

In other words, all displacements in the z-direction are equal.

The finite element grid used in the present analysis is shown in

Figure 5. A detailed description and flow chart of the computer program

(including time-dependence) is presented in Appendix B.

In the present micromechanics analysis, thermal- and moisture-

dilatational effects are included by means of initial strains [15]. In

order for the creep formulation to be compatable with the current pro-

gram, a scheme including creep strains as initital strains was adopted.

The technique for accomplishing this will be briefly explained in the

following paragraphs and illustrated in detail by mathematical equations

after that.

First, however, it is appropriate to convert Eq. (10), which is in

tensorial form, to the notation used by Miller and Adams 1141. The

time-dependent constitutive equation for an isotropic material under a
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63,0 PERCENT FIBER BY VOLUME

Figure 5. The finite element grid used in the present analysis
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generalized plane strain formulation for a constant stress state is

ex(t) 1 -v(t) 0 -v(t) ax

y(t) D 1 0 -v(t) r (1)

Yxy(t l+v(t) 0 Txy

Cz(t) symmetric I z

Under conditions of generalized plane strain, the normal strain ez is a

constant over the entire model (Figure 5), as previously mentioned, and

the shear strains yxz and yyz are assumed zero. In Eq. (11), D is given

by Eq. (8) and v(t) is the time-dependent Poisson's ratio.

In the finite element analysis, nodal point forces are generated

due to the creep strains. The magnitudes of these induced nodal forces

are a function of the geometry of an element and the time-dependent ma-

terial properties of that element. These node point forces are calculat-

ed using Eq. (11) and the elemental stresses at the beginning of the

time increment. Since this is an incremental finite element program,

care must be taken to insure that only the incremental and not the total

creep strains are calculated. To accomplish this, Eq. (11) is differen-

tiated with respect to time and evaluated at the time corresponding to

the midpoint of the time increment. By assuming the elemental stresses

to remain constant throughout the time interval, and multiplying through

by the time increment At, a linear approximation of the incremental creep

strain for that time increment is obtained. For this reason it is nec-

essary to keep the time increments, which are input into the analysis,

very small when the value of the creep compliance is changing rapidly.

For a constant externally applied stress, this rapid change corresponds

to the initial (or primary) part of the creep curve. Thus, it is
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necessary to keep the time increments small just after a load has been

applied or incremented. The magnitudes of these initial time increments

will of course depend upon the viscoelastic properties or the type of

material being modeled. Polymers may require many small increments (of

minutes or fractions of minutes), while steels may require only a few

increments (of minutes).

Details of the strain-displacement relations, shape functions, and

basic finite element formulation for the time-independent formulation are

given by Miller and Adams [14] and will not be repeated here. Rather,

only the equations which deal with the time-dependent finite element

formulation will be presented.

The equation which relates nodal forces to displacements can be

written as [14]

{F}i = [K]i{S}i + {F 0}i (12)

where {Fli is the incremental nodal force vector of the ith element due

to externally applied loads, FCO }i is the incremental nod-.l force vec-

tor due to temperature, moisture, and time changes, [K]i is the element

stiffness matrix, and {6}j is the incremental element nodal displacement

vector.

During a time increment, {Fli must be zero since loads can only be

applied during time-independent increments. Also, no changes in temper-
ature or moisture content can occur. Thus, {FC Ii is the incremental

* 0

* nodal force due to incremental strain changes caused by creep or the

time-dependent properties only.

The element stiffness matrix is defined as [14]

[K]T _ [B]T[D]i[B]itiAi (13)
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where [B1i, sometimes referred to as the shape matrix, relates the node

point displacements and the element strains, ti is the thickness of the

element in the out-of-plane direction (which is unity in the present an-

alysis), and Ai is the cross-sectional area of the element. The element-

al material properties matrix [D]i is found by evaluating the time-depend-

ent parameters such as D (see Eq. 8) and v(t) at the time corresponding

to the midpoint of the time increment, and then substituting into the

following matrix for an isotropic material under generalized plane strain

conditions:

1 v*/(l-v*) 0 v*/(I-v*)

1 0 v*/(l-v*)

(l-v*) [(1-2v*)/2(1-v*)] 0 (14)
(D] = D*(l+v*) (1-2v*)

symmetric 1

The terms D* and v* are the creep compliance and the time-dependent

Poisson's ratio, respectively, evaluated at the particular time defined

above.

Using Eq. (12) and the finite element analysis, the incremental

displacements can now be solved for if the incremental forces {F, 0) due

to the creep strains are known. The expression for {FC is [14]

{Fe }i = [B]T [D]{10}ti i (15)

where {e I is the incremental creep strain.
0

Evaluation of e 0) for an element is accomplished by the use of

Eqs. (11) and the element stresses at the beginning of the increment.

To get { 0} the derivative with respect to time is taken of Eqs. (11)
0'

and all of the time-dependent properties evaluated at the time corres-

ponding to the midpoint of the time interval. Using the first of Eqs.
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(11) as an example, i.e.,

ex = Dox - Dv(t)Oy - Dv(t)O z  (16)

its derivative with respect to time is

d
= 1-()0, - {[ -(D)]v(t) + (7dt x dt(17)

ddd ^
[dvtI~ -~ fy(D)]v(t) + [dtv(t)]^}O

It has been determined by several investigators [12,16,17] that Poisson's

ratio is time-independent or a very weak function of time. For this

reason, it was decided that certain terms in Eq. (17) could be considered

higler order effects and therefore be dropped from the equations, viz.,

the terms involving time rates of change of Poisson's ratio. With this

simplification, Eq. (17) becomes

d ^d Od d ^  [d(D)]v (t)ay - (D)]v(t)Oz. (18)

The terms go, D0, g1, g2, and a. in the nonlinear creep compliance D

(Eq. 8), are functions of stress, temperature and moisture only, and

are required to be constant throughout a time increment in this analysis.

Thus, when Eq. (18) is evaluated at a time corresponding to the midpoint

of the time increment and multiplied through by At, a linear approxima-

tion of the incremental creep strain cx is obtained.

A similar argument is applied to the relations for cy9 Cz, and Yxy;

the resulting equations are given below.

d CLd d~ d

dd ^ f
dt.z " d .].v(t)o .ax E. .D)Iv(t)ay + ..(D).. (19)

dt zt (19

d =d
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Once these incremental values of strain are known, the program

solves for the incremental node point displacements, which are later

used to find the new values for elemental stress. When this has been

accomplished, the program returns for the next increment of time, tem-

perature, moisture, or load.

Multiple Step Loading

For a two-step loading, as shown in Figure 6, the

[- a

a

t
a

time, t

Figure 6. Plot of stress versus time for a two-step input

constitutive equation is given by

c(t) = gbob + gbgbAD tt °b 
-

gb b bt-aD t-t

b~)-9Da b + 9 5 O

ga D tta iy + (20)
1 2 a_ a

baa

12 aa ab a

for time t>ta. Details of the derivation of Eq. (20) are presented by

Schapery (181 and also in Appendix A. The superscripts and subscripts

a and b are used to denote which constants, stresses, and times are
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associated with each stress level. It is important to note the two

additional terms which appear in Eq. (20), that did not appear in Eq. (7).

These two terms represent the application of a -oa stress and a +Ob

stress, beginning at time t-ta. It is necessary to include the two ad-

ditional terms due to the nonlinear dependence of certain constants in

Eq. (8) upon the applied stress level. If the material behavior were

linearly viscoelastic, it would be necessary to add only one term to

Eq. (7), viz., a term involving a stress increment of the difference

between the two stress inputs (Ob-Oa).

While other authors [19,20] have developed recursive relationships

which require integration of the viscoelastic constitutive relations over

the current time increment only, no feasable method of keeping track of

the stress history was discovered which was compatable with the current

finite element formulation. This means that individual histories for

each load step had to be kept track of in the current analysis and the

contribution of each history solved for separately. For example, a two-

step loading shown in Figure 6 requires the program to solve for three

contributions of the total creep strain for time t>ta; the strain due to

the initial application of +aa at time t=0, the strain due to a pseudo

application of -Oa at time t=ta, and the strain due to a pseudo applica-

tion of +ob at time t~ta . Each additional step in stress would require

two extra solutions. While the program is capable of any number of step

loadings, it can realistically model only a finite number of step loadings

due to the increase of computer time necessary to solve additional in-

crements. Using a CDC Cyber 760 computer, approximately 2-3 seconds of

computer time are required to solve one stress increment using the
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finite element mesh shown in Figure 5. (This mesh has a bandwidth of

75.) Thus, for times t>ta, approximately 6-9 seconds of computer time

are required for each time increment.

While the formulation by Haisler and Saunders [19,20] avoids this

difficulty, it requires the use of an iterative scheme and hence cannot

readily model materials with "flat" stress-strain curves such as aluminum

[21]. Thus, the micromechanical modeling of a composite such as boron/

aluminum would be very difficult. Also, iterative schemes can require

large amounts of computer time to converge upon a solution.

The intent of the present study was not to analyze the relative ad-

vantages and disadvantages of a particular finite element method. Rather,

the goal was to use an existing finite element micromechanics program and

incorporate time-dependent effects. In this chapter, the viscoelastic

constitutive equations were presented and a scheme for incorporating

these equations into a finite element analysis was devised. However,

numerical values for the time-dependent parameters must be known. In

the following chapter, a brief experimental program is described which

was conducted to determine these parameters.

91



CHAPTER IV

EXPERIMENTAL CHARACTERIZATION

In order to utilize the constitutive equations presented in the

previous chapter, a series of creep-recovery tests is necessary. To in-

clude the dependence of the kernels in the equations upon temperature

and moisture, a full experimental program of isothermal, constant humid-

ity, and constant stress tests must be conducted. A method of evaluating

all parameters given in Eqs. (4) and (5) has been developed by Lou and

Schapery f11] and will be demonstrated in this chapter.

Test Method

In the present study, a brief experimental program was undertaken

in order to evaluate the creep constants which were needed as input to

the finite element program. This experimental program was not intended

to completely evaluate the viscoelastic parameters necessary for the con-

stitutive equations. Rather, the goal was to obtain approximations of

the numerical values for the kernels to be used as input to the computer

program. A series of compression creep-recovery tests were run on

Hercules 3501-6 epoxy resin [221 test specimens. A compression test was

selected to avoid the gripping problem usually associated with tensile

tests of neat (unreinforced) resin materials [12).

For this program, a total of fifteen specimens were tested at five

different stress levels (i.e., three specimens at each stress level
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selected). All tests were conducted at room temperature (21*C) and

ambient humidity.

The specimens were fabricated from -inch diameter rods cast in a

split steel mold. The rods, molded in approximately 6-inch lengths,

were cut into 1 -inch long test specimens. The ends were then ground

flat using a surface grinder to insure that they were smooth and parallel

to each other. Details of the fabrication and curing process may be

found in Reference [23].

An Instron Model 1321 servohydraulic testing machine was used to

apply and maintain a constant load on the rods. Strain was measured

using a -inch gage length extensometer and all data were taken using a

Hewlett-Packard 21MX Series E minicomputer. The values of load, strain,

and time were taken just prior to and just after application of the load.

The total time to apply load for all tests was about four seconds. After

application of the load, values of load, strain, and time were recorded

each minute for ten minutes. After that time, data were recorded every

five minutes. The creep tests lasted for approximately one hour, after

which time the computer automatically removed the load while continuing

to record the load, strain, and time. At this point data were taken at

one minute intervals for ten minutes. After ten minutes, data were

taken every five minutes for another two hours.

This procedure was used for each of five different compressive

stress levels, i.e., 2000, 6000, 8000, 16,000, and 20,000 psi. The

teats conducted at 2000 psi were checked for linearity and found to

satisfy the principle of superposition as discussed in Chapter III.
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Experimental Results

Plots of the data taken are shown in Appendix C. These plots are

actual unretouched data acquired by the minicomputer.

The technique developed by Lou and Schapery [11], which reduces the

data presented in Appendix C, makes use of a power law representation to

describe the nonlinear creep compliance expressed by Eq. (8). This meth-

od utilizes recovery data to determine the exponent used in the power

law. A constitutive equation describing the recovery portion of the

creep curve is derived in Appendix A and the equations are repeated here

for convenience. For the stress history described in Figure 7, the re-

covery strain is

Cr(t) = [(1 + aX)n - (aaA)n ]  (21)91

where tta
(22)ta

and Aca= E(ta) - co = g1g2Ctoa  (23)

for time t>ta. The term C is a constant from the power law (see Appendix

A) and the term c in Eq. (23) is the initial or time-independent value

of strain which occurs at time t=O.

t
a

a,

time, t

Figure 7. Plot of stress versus time for a creep-recovery test
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The first step in the evaluation of the creep parameters is to de-

termine the exponent n. This may be found by plotting the equation

er(t) = (1 +,)n - (X)n  (24)

on log-log paper for several values of n (usually 0<n<0.5) and overlay-

ing these curves on the experimental recovery curves. Equation (24) is

generated by setting Aca, g , and a. equal to one in Eq. (21). This is

done since only the exponent is being determined at this time. The best

fit to all of the data will determine a value for n.

Since the tests run at 2000 psi satisfied the superposition principle,

the response was linear viscoelastic and all of the terms go, gli g2, and

a0 were equal to one. For this reascn, these particular curves were aver-

aged and used as a reference curve for all other stress levels tested.

By using a reference curve, the values of g 0 g g2 , and a. as a function

of stress were determined.

To make the recovery curves described by Eq. (21) match the refer-

ence curve (at 2000 psi), a certain amount of horizontal and vertical

shifting is necessary. The amount of horizontal shifting required deter-

mines the value for a.. If ao>l the data must be shifted to the right,

and if ao<l the data must be shifted to the left. The amount of vertical

shifting determines the value of Aca/g 1. If Aca/g 1 >l the data must be

shifted downward; if Ac./g <l the data must be shifted upward.

Once the values for aG and Aca/g1 have been determined, the value of

g, may be calculated using the first part of Eq. (23) to get Acs. Plots

of a0 and g1 versus stress for Hercules 3501-6 epoxy resin are shown in

Figures 8 and 9, respectively. Note that these plots show abrupt changes

around 2000 psi. This was intentionally done to force these constants to
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have a value of one, during the range of linear viscoelastic behavior.

It would not be meaningful for these constants to have values other than

one in this range. To determine exactly how the curves transition from

linear to nonlinear viscoelasticity, more tests need to be run at these

stress levels.

The only remaining creep constants which need to be determined are

go and g2. Values of the product g0D0in Eq. (8) are easily calculated

since they are merely the ratio of initial strain to the applied stress

(C0/Ga). A plot of the relationship of the product g0D0 to stress is

shown in Figure 10.

The functional relationship of g2 with stress was detdrmined by

utilizing a power law in Eq. (7). Substitution of the power law Eq.

(A-15) into Eq. (7) gives

n
C(t) = g0D0aa + Cglg 2  oa.  (25)

Using Eq. (25) and the parameters g0D0 , gj, and a. just determined from

the creep data, the product Cg2 may be determined for each value of stress.

During the linear viscoelastic range (up to approximately 2000 psi in the

present case), g2 is equal to one and C is equal to the net time-depend-

ent (transient) portion of the creep compliance at unit time. By divid-

ing through by C for each product Cg2 determined, the term g2 as a

function of stress is obtained. A plot of g2 versus stress for Hercules

3501-6 epoxy resin is as shown in Figure 11.

In Appendix C, Figures C-11 through C-15 show actual data (indicated

by the stars) plotted against the predicted creep response, using the

creep parameters just calculated. There is excellent agreement between

the data and the prediction, as expected.
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Some difficulty was encountered when shifting of the recovery data

was done to obtain the terms aO and Aca/gl. For this reason, the data

plotted in Figures 8 through 11 may be questionable. In particular, the

amount of shifting done for each test was not always consistent. For

some of the tests, a specific amount of horizontal and vertical shifting

was done, while for others (subjected to the same stress level) only ver-

tical shifting was necessary. Thus, the results plotted in Figures 8 and

9 have been obtained through a degree of estimation. Agreement between

the data and the predictions presented in Appendix C for creep is good

since the final parameter g2 is found by using creep data and Eq. (25),

with the values determined for D 0g 0, g1 , and a0 . The problem of a poor

fit of the predictions to the data would arise only when the kernels

appear individually and not together as the product g1g2/(ao)n in Eq. (25).

One such instance would be during recovery. In Eq. (21), the kernel g

cancels with g, contained in the term Aea and hence does not appear in

the equation. This problem will be exemplified in the next chapter by

recovery predictions made using these kernels. To avoid this difficulty,

data should be sampled more often during both the creep and recovery tests.

Also, it has been recommended in the literature (11,12] that a curve be

drawn through the data points and used for shifting instead of using the

actual data points as was done here. This helps to smooth out and also

eliminate extaneous data points. By following these suggestions it is

expected that more accurate values for g., gl, g2 and a0 will be obtained.



CHAPTER V

NUMERICAL EXAMPLES

Several examples are presented in this chapter to demonstrate the

capability of the analysis. A short description of each load case is pre-

sented, followed by a series of contour plots illustrating the internal

stress state of the composite. All examples use the finite element mesh

shown in Figure 5, which corresponds to a 63 percent fiber volume, except

where noted.

The computer program was first checked out by applying a uniaxial

tensile load to a model made up entirely of resin. Two independent sets

of data, one generated in this study for Hercules 3501-6 epoxy resin and

another generated by Beckwith [121 for Shell 58-68R epoxy resin, were

used as input to the program. Temperature and moisture levels were held

constant during each simulation so that the solution generated by the

computer program could be compared to the input data.

The next check was performed by modeling an actual composite sub-

jected to a uniaxial transverse normal load. The results predicted by

the program were compared with actual data generated by Beckwith [12]

and Irion [24] using the Shell and Hercules resin systems, respectively.

Once verifications with simple uniaxial creep tests were demonstrat-

ed, the effect of fiber volume was briefly examined. Next, several runs

were made to demonstrate that the internal stress behavior of a composite

during cooldown can be predicted. Finally, uniaxial cycling and multi-

axial load tests were simulated and the internal stress states of each
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composite as a function of time were examined.

The analysis is capable of handling the effects of moisture; however,

no examples are presented in this chapter since there were no experi-

mental data available concerning this effect. The absorption of moisture

into a composite has the same general effect as a temperature increase,

i.e., both have a similar influence on the time shift factor a0.

Specifically, the absorption of moisture tends to make a comijosite creep

more. As mentioned in Chapter IV, to include the effects of moisture,

several creep-recovery tests at various moisture levels for several values

of stress must be run.

Creep of Epoxy Resin

Using the data generated by Beckwith [12] for the Shell epoxy resin,

a uniaxial load was applied to a neat epoxy resin model. This model was

made by specifying all elements in the finite element mesh shown in

Figure 5 to have neat resin properties. A stress of 1000 psi in the x-

direction (see Figure 4b) was applied for 2.1 hours and then removed,

after which recovery was determined for another 2.1 hours. This pro-

cedure was repeated for three separate constant temperature levels, i.e.,

-6.70C (200F), 23.9 0C (750F), and 60.00C (140 0 F). During each simulation,

the moisture content was assumed to be zero.

Results of the comparison are shown in Figures 12 and 13. The actual

input response is represented by the solid lines while the predictions

made using the finite element analysis are shown by the symbols. To

obtain the solid lines or the input (expected) response, the consti-

tutive equation for each test condition was written and then plotted for
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a total time of five hours. This was easily done since the moisture,

temperature, and stress levels were held constant throughout the tests

(except during recovery, where the stress was removed). In Figure 13

the strain scale has been expanded, greatly exaggerating the error be-

tween the predictions (symbols) and the expected response (solid lines).

By closely examining Figure 13, it can be seen that the agreement between

the predictions and the expected response is excellent; the maximum error

for the highest temperature (60.0°C) is less than 3 percent. To obtain

this close agreement at the high temperature, several time increments of

one minute were used at the beginning of the creep and recovery portions

of the test. It was necessary to use these small increments since the

effects of creep are magnified by higher temperature, moisture, or stress

levels. In these cases, the initial or primary portion of the creep

curve is changing very rapidly. Thus, it is necessary to keep the time

increments small just after the load has been changed or incremented.

The time increments used in each test in this example were selected

somewhat arbitrarily. It is clear that a certain amount of care is re-

quired when selecting the time increments. While the 60*C test required

several one minute increments, the -6.7°C test did not. Of course it

is always possible to use more and smaller time increments for any par-

ticular loading case. However, the additional accuracy achieved requires

additional computer time and may or may not be cost effective. Finer

increments than those used in Figure 12 were tried, but no significant

improvement in accuracy was obtained.

Uniaxial creep-recovery tests were also simulated for the Hercules

epoxy resin data generated in the present study. Since the effects of
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temperature and the parameters necessary to describe such effects were

not investigated, two-hour creep followed by two-hour recovery tests at

various stress levels were modeled. Results for 2000 psi, 8000 psi, and

19,000 psi uniaxial tensile simulations at 21.0*C and zero moisture are

shown in Figures D-1 through D-6 in Appendix D. Figures D-2, D-4, and

D-6 show the creep portion of the curves with expanded strain scales.

The predictions (symbols) compare well with the experimentally Marasured

response (solid lines). For all cases, the error is less than 6 percent

and the general shape of the predicted response matches the experimental

response quite well. Closer examination of these figures reveals that

the error present is essentially constant for all times, meaning that the

error was generated during the first few time increments. Again, to

keep this error small, as shown in these figures, the time increments

were judiciously chosen for the primary stages of creep (when the load

had just been changed), especially at higher stress levels. As expected,

the error increases with higher applied stresses.

While the recovery predictions for all simulations (including the

Beckwith data) matched the expected response quite well, there was con-

siderable error for the recovery predictions for the Hercules resin sub-

ject to 19,000 psi (see Figure D-5). No reasonable explanation for this

anomaly can be offered at this time.

Stress contour plots for the above simulation have not been presented

since the resin is obviously in a uniform stress state. Element stresses

were checked immediately after application of a load and at various times

later to make certain that there were no changes. Also, the element

stresses were checked to make certain they were zero upon removal of the
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load and at various times following.

Creep of a Composite

Using the data for the Shell epoxy resin generated by Beckwith [12]

and the properties for S2 glass given in Table I, two-hour creep and two-

hour recovery tests for a 1000 psi transverse normal stress were simulat-

ed. The assumed properties of the fibers were based upon available experi-

mental data as referenced. Since the transverse properties of the fibers

(i.e., Et, Vztq ')tt, at) are not well-characterized, their values are

estimates based upon the existing literature. In all of the following

composite models, the fibers are assumed to behave time-independently.

That is, the fibers themselves do not show any viscoelastic behavior.

Longitudinal creep data generated by Beckwith [12] and Irion [24] for

unidirectional glass and graphite composites support this assumption.

The results of each simulation are compared with those for actual

composite specimens [12] subject to three different constant temperatures

of -6.7*C (20*F), 23.9C (75°F), and 600C (140*F). They are plotted in

Figure 14. The moisture content was taken to be zero for all simulations

since no data were available [12] to account for this effect. While

Beckwith [12] used S-901 glass fibers instead of S2 glass, the difference

between the fiber properties should not affect the results significantly,

as will be explained shortly.

The agreement for low temperatures is excellent; however, there is

considerable error at the high temperature of 60.0*C. The time incre-

ments were the same as the ones used previously for the epoxy resin

modeling. While this could be responsible for some of the error (see
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Figure 13), it certainly is not the sole cause. Since there was reason-

ably good agreement for the neat resin at the high temperature, and

since transverse normal loading is a matrix-dominated response, it

would be reasonable to assume that the results presented in [12] for

this particular temperature are questionable. That is, during a trans-

verse loading, the fiber properties do not play a significant role in

the strain response of the composite. While the fiber volume content

does affect the response, as will be demonstrated later, the time-indpend-

ent modulus and transverse strain are typically characteristic of the

type of matrix material used (in this case epoxy resin). Thus, it is

logical to assume that the transverse time-dependent (creep) response of

a composite will also be characteristic of the type of matrix material

used. Further examination of the value generated by Beckwith at this

particular temperature reveals some discrepancy between it and the values

for other fiber angles. The data in Reference [12] show the time-independ-

ent portion as well as the time-dependent portion of the creep compliance

to be gradually increasing as the angle of orientation of the load

(with respect to the fibers) increases. In the Beckwith data [12], how-

ever, there is a drop in the time-independent portion and a drastic in-

crease in the time-dependent portion of the creep compliance for the

angle of 900. Thus, it is likely that the prediction made using the

present analysis represents more closely the true material response

than the reduced data presented in Reference [12].

The following comparisons with the data presented by Trion [24]

tends to support this statement. Using data for Hercules 3501-6 epoxy

resin determined in this study, and the properties for S2 glass and
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Hercules AS graphite fibers given in Table I, creep tests were simulated.

The S2 glass composites were subjected to -20 and -23 ksi (compressive)

transverse stresses in the x-direction. The predictions are plotted

along with actual experimental data in Figures 15 through 17. Similarly,

an AS graphite/epoxy composite subjected to a -27 ksi (compressive)

transverse stress was simulated and the comparison shown in Figure 18.

In all four figures the scale has been expanded, magnifying the error

between the predictions and the experiment. In Figures 15 through 18,

predictions are shown by the symbols while the experimental results are

represented by the solid lines. All simulations were made assuming the

temperature to be 210C and the moisture content to be zero. While actual

test specimens may have contained some moisture due to the relative am-

bient humidity, no data were available to determine this influence upon

the creep parameters used in the analysis. Therefore its effect was

neglected.

For the comparisons mentioned above, two predictions were actually

made, one including a cure simulation and one without a cure simulation.

The predictions with a cure, represented by the* symbols in Figures 15

through 18, involved simulating a cooldown from the 177*C cure tempera-

ture to room temperature (210C). This was done using six time-independ-

ent temperature increments to achieve 21°C, and was followed by a 140-

hour relaxation period. The relaxation time was arbitrary and was in-

cluded in order to simulate what would happen to the stresses in a com-

posite after it had been cured and allowed to "stand" for several hours.

It was discovered that longer relaxation times tend to produce lower

and more uniform stress states. This will be demonstrated later using
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contour plots of the composite model during a cure simulation.

After this relaxation period, the load was applied and the model

allowed to creep. Creep strains plotted in Figures 15 through 18 for

the "with cure" simulation were "zeroed" by subtracting the thermal

strain prior to loading from the subsequent total strains. In examin-

ing these figures it will be noted that the creep strains for the sim-

ulation which involved a cure cycle are higher than those for the sim-

ulation which did not involve a cure cycle. The reason is that the in-

inital internal stresses in an uncured composite model are zero, while

the internal stresses in the cured composite are very high. These in-

itial stresses are mainly compressive and are caused by the difference

in the coefficients of thermal expansion between the fiber and the matrix.

In the transverse plane (see Figure 5), the fiber contracts during the

cooling process, while the matrix contracts even more. With the presence

of a fiber, however, this matrix contraction is restricted, producing

compressive residual stresses in the matrix. Thus, the application of a

compressive stress serves to raise the internal stress state, which

tends to make the composite creep more. Actually, the cau3e of these

residual stresses in the composite is more complicated than just described.

The relative stiffnesses and Poisson's ratios of both the fiber and the

matrix material also play a role in determining these stresses. Adams

and Monib [29] have described the influence of these parameters in detail.

Both "with" and "without cure" predictions were made in order to

obtain a "range" in which the experimental data might lie. In other

words, the subsequent response of a composite is a function of how long

it has been since the specimen was fabricated. In theory, the internal
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stresses should be very small and uniform after a very long relaxation

time. It is expected that the actual experimental data will lie some-

where within this range, and the predictions shown in Figures 15 through

18 seem to confirm this. In Figures 16 and 17, the predictions (for the

-23 ksi stress) are over and under, respectively, the actual measured

data for the glass/epoxy composite, while the experimental data for the

-20 ksi stress (Figure 15) fall within the predicted range. In figure

18, the predictions for the graphite/epoxy composite overestimate the ex-

perimentally measured response. There is considerable scatter in the ex-

perimental data found in Reference [24]. The errors between the predic-

tions and these experiments, as shown in Figures 15 through 18, are of

the same magnitude as the experimental scatter. Thus, the agreement be-

tween the predictions and experiment is quite reasonable considering the

limited abount of data available. It is important to note that in each

of these figures the strain scale has been enlarged, magnifying the

errors between the predictions and the experimental data. By picturing

these plots with a full scale, the relative error is put into proper per-

spective.

While Irion [24] used a slightly lower cure temperature for a longer

period of time, it is expected that the results using his cure would be

very close to those actually modeled. In fact, the lower cure tempera-

ture would tend to induce lower initial residual stresses. Thus, such

a cure simulation would fall within the range already predicted.

Contour plots for the glass/epoxy composite for both the "with" and

"without cure" cycles are shown in Appendix D. Figures D-7a and D-7b

show octahedral shear stress and strain contours immediately after cool-
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down of the composite, while Figures D-7c through D-7h show the composite

after 0.5, 2.1, and 140 hours of relaxation. Figures D-7i and D-7j

show octahedral shear stress and strain contours, respectively, for the

composite just after application of the load, and Figures D-7k and D-7Z

show these two plots for the composite after the load has been applied

for 140 hours.

It is important to note that the octahedral shear stress plots for

all of the following examples have been "normalized". That is, all of

the contour values shown in the plots have been divided by the yield

value of the octahedral stress. The yield values for the epoxy resin

were previously determined in Reference [27]. Thus, a contour value

greater than one signifies that the region has yielded.

It is clear from Figures D-7a, D-7c, D-7e, and D-7g that the inter-

nal stresses are relaxing from the cure cycle, as expected. While the

shapes of the contour lines appear to be the same, the magnitude of each

contour line has been reduced with time. It is interesting to compare

the contour values of the octahedral shear stresses in Figures D-71 and

D-7k. After 140 hours of elapsed time after application of the load,

the contours are seen to have shifted, relieving the high stress state

in the lower right-hand corner. The concentration of stresses in this

corner was induced by loading the composite in the x-direction (see

Figure 4b).

The octahedral shear strain plots (Figures D-7b, D-7d, D-7f, and

D-7h) reveal only minute changes of the internal strain during relaxation,

as exhibited by both the shapes and magnitudes of the contour lines.

This is reasonable since a change in temperature creates a symmetric
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loading and the net force on the boundary due to this type of loading is

zero. Figures D-7j and D-7Z illustrate the change in octahedral shear

strain immediately after the load has been applied, and 140 hours later.

During this time the strain in the lower right-hand corner is seen to

substantially increase, while only moderate increases in strain are ob-

served for the upper portions of the model. These changes in strain are

responsible for the redistribution of stresses during this time period.

In Figure D-8, plots of the normal stress and tangential shear

stress on the fiber-matrix interface are shown for the above simulation,

immediately after cure, 140 hours later, immediately after application

of the load, and 140 hours after that. Due to the required continuity

of the normal and tangential shear stress at the interface, these figures

represent the interface stress state in both fiber and matrix. Since a

square fiber packing was assumed in this model, the interface stress

plots must be symmetric. The normal stress (Figures D-8a and D-8c) is

symmetric about the horizontal, vertical, and 450 axes, while the tan-

gential shear stress (Figures D-8b and D-8d) is symmetric about the

22 and 67 ° axes. The shear stress is antisymmetric about the 450

axis, although the polar plots tend to distort this fact. These axes of

symmetry will change, however, for a nonsymnetrical loading (see Figures

D-8e through D-8h). Comparing Figures D-8a and D-8b with D-8c and D-8d,

and D-8e and D-8f with D-8g and D-8h, it is seen that there is a reduc-

tion in both the normal and tangential shear stresses with time. For

the symmetrical loading caused by the cooldown, the contour lines do not

change in shape but only in magnitude, as expected. On the other hand,

there is a slight change in shape as well as magnitude with time for the
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loaded composite. These changes are in agreement with the upward redis-

tribution of stress observed in Figures D-71 and D-7k.

Figure D-9 represents the glass/epoxy composite in which curing was

not simulated. The first two plots are octahedral shear stress and octa-

hedral shear strain contour plots for the instant immediately after appli-

cation of the load, while the last two are for 140 hours after application

of the load. Since the internal stresses are lower in this model than in

the previous model (see Figures D-7i and D-7k), there is less redistri-

bution of the stresses, as evidenced by Figures D-9a and D-9c.

The octahedral shear strain (Figures D-9b and D-9d) is again seen

to increase significantly in the lower right-hand corner (where the stress

is high), with only moderate increases in the upper portion of the model.

This is also caused by the lower initial stress state present in this

composite than in the composite with the cure. Thus, a higher stress

state in a composite corresponds to a greater amount of creep strain,

which in turn causes a greater redistribution of the stresses.

The normal and tangential shear stresses on the fiber-matrix inter-

face were similar to those shown in Figures D-8e through D-8f. While

the values were not as large in this case, the changes in shape and

magnitude were very similar.

Effect of Fiber Volume

To demonstrate the effect of fiber volume, two identical computer

runs were made, using 50 percent and 63 percent fiber volume. For this

example, a glass/epoxy composite was subjected to a -20 ksi stress at

21"C and zero moisture for 140 hours. The composite'strain response is



59

plotted in Figure 19 for the two fiber volumes. As expected, the lower

fiber volume content composite showed more creep strain than did the

higher fiber volume composite. This is due primarily to the fact that

there is more matrix material in the 50 percent fiber volume composite.

This is consistent with the results presented for the neat resin model

(see Figure D-6), which showed even more creep than did the 50 percent

fiber volume composite.

Contour plots of the 50 percent fiber volume composite are shown in

Figure D-10 for times immediately after application of the load and 140

hours later. Comparison of these plots with those for the 63 percent

fiber volume composite (Figure D-9) reveals the higher octahedral stress

state just after load application and 140 hours later.

The octahedral shear strain plots for the 50 percenc fiber volume

composite show a significant change in the upper portion of the model,

just as the higher fiber volume composite does. This indicates that a

corresponding rearrangement of the stresses is occurring in this area.

Figures D-10a and D-10c illustrate this fact.

The normal and tangential shear stresses along the fiber-matrix

interface (Figure D-11) indicate a change in shape similar to that of

the 63 percent fiber volume composite. The magnitude of this change

is much smaller for the 50 percent fiber volume composite, however.

This means that while there is a greater redistribution of stresses in

this model, they are occurring away from the fiber-matrix Interface.

Relaxation After Cure

Two runs were made in order to examine the change in internal stress
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state after curing the composite. Figures D-7a through D-7h demonstrate

a symmetric distribution of the contour lines, and show that there are

no changes in shape of these lines over a period of time. This is rea-

sonable since the temperature, assumed to be uniform throughout the com-

posite, would create a symmetrical stress state after the curing process.

While the shape of the contour plots remained unchanged, the magnitudes

of the lines decreased in the octahedral shear stress plots. This indi-

cates that the relaxation continues to occur long after the cooldown pro-

cess. The contour plots illustrate that the majority of relaxation takes

place within a few hours, however.

The results of a modified cure cycle are presented in Figure D-12.

A composite was cooled from 177*C to 99*C, held for 2.1 hours, then

cooled to room temperature (21*C) and allowed to relax for another 2.1

hours. Figures D-12a and D-12b show contours for the time immediately

following the cooldown to 990C, while Figures D-12c and D-12d illustrate

the stress state after 2.1 hours of relaxation. In Figures D-12e and

D-12f, the contour plots are shown immediately after the cooldown to

21*C, and Figures D-12g and D-12h for 2.1 hours later.

A slight reduction in the octahedral shear stresses was observed

in this case relative to those for the composite cured without the

intermediate hold (see Figures D-7e and D-7f). This indicates that it

is possible to "slow cool" a composite and achieve a lower internal

stress state at the end of the cooldown. By changing the intermediate

temperature and/or the length of time the composite is held at this

temperature, an "ideal" curing cycle may be found using the current

analysis. This can be extremely beneficial since it is usually
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desirable to have a composite in the lowest stress state possible follow-

ing a cure. This analysis could also be used to simulate the "annealing"

of a unidirectional laminate. In other words, if the composite were re-

heated following a cooldown and slowly cooled again, this analysis could

be used to determine a suitable cooling profile to reduce the residual

stresses in the composite.

The octahedral shear strains in this example case did not change

significantly with time, due to the symmetry and type of loading. As

mentioned previously, a thermal loading produces a symmetric stress state

with no net stresses on the boundary. Therefore, the total strain ex-

hibited by the composite will be very small. The interface stresses

changed very little throughout this curing cycle, and thus are not

presented.

Cyclic Loading

To simulate a cyclic loading, a glass/epoxy composite was subjected

to a plus and minus 5000 psi uniaxial, x-direction loading. No cure was

simulated so that the effects of the cyclic loading could be isolated and

studied independently. The stress was applied for 2.1 hours, then re-

versed for another 2.1 hours. About one and one-half cycles were modeled,

and the total strain results are plotted in Figure 20. Here it is easily

seen that the maximum absolute value of the strain just prior to the re-

versal of the stress is constant for each half cycle. At higher values

of stress, it is expected that this value wouldnot remain constant. To

illustrate this point, the same composite was subjected to a plus and

minus 20 ksi x-direction loading, a plot of strain versus time being
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shown in Figure 21. Here the maximum absolute value of the strain just

after each stress reversal actually increases with time. That is, the

amount of time-independent strain produced by the first reversal 6f

stress at 2.1 hours is greater than twice the amount of strain produced

by the application of the initial 20,000 psi stress at zero hours. This

is caused by the program using a different stiffness for the matrix ma-

terial during the stress reversal. It would be expected that an incre-

ment of -40,000 psi would produce twice the amount of strain that the

+20,000 psi stress did if the material behavior were elastic. However,

the program which assumes the material behavior to be linear initially,

now considers the matrix to be yielded. Since it cannot anticipate the

next loading increment, it assumes the material to behave in a nonlinear

(plastic) manner and hence calculates the corresponding tangent modulus.

This modulus will be lower than the elastic modulus, which gives rise to

the greater amount of strain. This problem could have been avoided by

inputing a smaller increment of stress (-1000 psi for example) followed

by a larger increment of stress (-39,000 psi). By doing this, the pro-

gram would have unloaded the composite plastically during the first

increment, sensed that the composite was being unloaded, and unloaded the

composite elastically during the second increment. Actually, to accurate-

ly model stress reversal at this stress level, several increments are

needed to apply and reverse the 20,000 psi stress during the time-inde-

pendent increments. This was not done in this case since there was only

a limited amount of epoxy matrix creep data available anyway. Rather,

the idea here was to demonstrate the capability of the analysis.

It is also interesting to note that the strain due solely to creep
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actually increases with each half cycle. This is caused by the fact

that there are two pseudo applied stresses immediately after a stress

change which contribute to the total creep strain. Since these two

stresses have just been applied, their (primary creep) contributions are

much larger than those for stresses which have been applied for some

time (secondary creep). As an example, for time 2.1<t<4.2 hours, three

contributions of strain are present (see Appendix B). These contributions

are from the +20,000 psi stress applied at time t=0.0 hours and two -20,000

psi stresses applied at time t=2.1 hours. Examination of the data reveals

that the creep strains due to the pseudo application of the two -20,000

psi stresses at 2.1 hours are much greater than those due to the +20,000

psi stress applied at the beginning of the test. The contributions of

strain due to the +20,000 psi stress are secondary creep effects while

those for recovery and the application of the -20,000 psi stress are

primary creep effects (see Figure 1c). Thus, the composite shows more

creep strain during the second half cycle than it did during the first.

Likewise, the pseudo application of the two +20,000 psi stresses at 4.2

hours, plus the +20,000 psi stress applied at 0.0 hours, tends to negate

the effects of the two -20,0 psi stresses applied at 2.1 hours.

Contour plots of the internal stress state immediately after appli-

cation and just prior to the reversal of the stress for each half cycle

are shown in Figure D-13. The contour plots, as before, indicate a lower-

ing of the octahedral shear stress with time after the load has just been

incremnted. While both' the octahedral shear stress and octahedral shear

*traln contour shapes changed very little, the magnitudes do indicate a

wollng of the stresses, times 2.1 hours later being shown. It is

.... - - - -- -----
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interesting to observe the difference in contour shapes for the two posi-

tive stress cycles during the test (Figures D-13a through D-13d and D-13i

through D-13t). Immediately after application of the second +20,000 psi

stress, the contour values are higher than they were after application of

the initial +20,000 psi stress. However, two hours after the second

+20,000 psi stress is applied, the stresses rearrange themselves in

Figure D-13k very much the same as they did two hours after application

of the first +20,000 psi stress (Figure D-13c). In each case, the highly

stressed region has moved upward (in the y-direction) from the lower right-

hand corner. Thus, even after a stress reversal, the highly stressed

regions tend to redistribute themselves in order to smooth or even out the

stress gradients present. The octahedral shear strain plots show this re-

distribution by the large values of strain present in these areas.

In going from the +20,000 psi (Figure D-13c) to the -20,000 psi

(Figure D-13e) value of stress (during the time-independent increment),

the contour shapes also rearrange themselves so that the high stress con-

centration is moved upward. On the other hand, in going from the negative

(Figure D-13g) to the posititve (Figure D-13i) value of stress, the high

stress concentration area is pulled downward.

Contour plots for the plus and minus 5000 psi loading did not change

much since the material behavior did not exceed the elastic limit. The

contour shapes remained essentially the same and the only real indications

of creep were the changes in the octahedral shear strain plots.

Plots of the normal and tangential shear interface stresses for the

20 ksi cycling case are shown in Figure D-14. Again, each plot corres-

ponds to the stress state just before and after the load is incremented.
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While the normal interface stresses are reduced with time during the

tensile loads, they increase with time during the compressive loading.

On the other hand, the tangential shear stresses behave in the opposite

manner. It will also be noted that the signs of both interface stresses

change when the load is reversed.

Multiaxial Loading

A 5000 psi stress was applied in both the x- and y-directions and

the composite was allowed to creep for 140 hours. Again, no cure was

simulated so that the effects of the multiaxial loading could be isolated

and studied. A plot of x-direction strain versus time is shown in Figure

22. The y-direction strain versus time plot is not presented since it is

identical to that for the x-direction. There is some irregularity in

Figure 22 due to the limited number of points plotted. In this computer

plot, the data points were connected with straight lines, giving the false

illusion of a depression between 14 and 45 hours.

Contour plots of the internal stress state are shown in Figure D-15.

As expected for a symmetrical loading, little redistribution of the octa-

hedral shear stresses or strains occurred even after 140 hours. In fact,

there were essentially no changes in the magnitudes of the octahedral

shear stress at all. The plots of the octahedral shear strain did indicate

that creep in the form of an overall expansion of the model was taking

place, however.

A slightly different multiaxial loading case was also simulated.

Here, a 15,000 psi and a 5000 psi stress were applied to the same model

in the x- and y-directions, respectively, for 140 hours. Strain versus
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time plots are shown for the x- and y-directions in Figures 23 and 24.

Note that while the x-direction displayed a reasonable amount of creep

for the applied stress, the y-direction showed very little. It can be

seen that this composite exhibited 10 to 15 times more creep in the

x-direction than in the y-direction. By comparing the strain versus

time plots for the direction in which the 5000 psi stress was applied in

both multiaxial loading cases (Figures 22 and 24), it is seen that the

specimen with the symmetric loading exhibited 3 to 4 times the amount of

creep strain compared to the specimen which was not symmetrically loaded.

This illustrates the time-dependent effect of a constant Poisson's ratio.

If this ratio were assumed to change with time, the response would ob-

viously be different.

Contour plots of octahedral shear stress for the nonsymmetrical load-

ing case (Figure D-16) show a slight reduction in the internal stress

state after 140 hours. On the other hand, the octahedral shear strain

contour values are seen to increase with time. As in the symmetrical

loading case, both the octahedral shear stress and strain contour shapes

remain essentially unchanged.

Interface normal and tangential shear stress plots for the symmetric

and nonsymmetric loading cases are presented in Figures D-17 and D-18,

respectively. While no changes in the tangential shear stresses with

time for either simulation were observed, the normal stresses on the inter-

face increased slightly for the symmetric loading and decreased for the

nonsymmetric loading. The reason for this is that the applied stresses are

causing the matrix material to creep, while it is assumed that the fiber

does not. For the symmetrical loading case, the stresses caused by the
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creep strains in the matrix cannot redistribute themselves and therefore

increase. This situation is analogous to placing a piece of material

between two rigid supports and raising the temperature. As the material

attempts to expand, the rigid supports restrict the expansion, inducing

higher and higher stresses in the material. In the case of the non-

symmetric loading, the stresses can redistribute themselves, as they did

in the uniaxial loading cases, in order to relieve stress concentrations

or highly stressed areas.

In general, it can be said that for the composite models subjected to

a decrease in temperature, the octahedral shear strain plots showed only

small changes with time, while the octahedral shear stress plots illus-

trated symmetrical decreases. On the other hand, models subjected to

symmetrical external loadings showed balanced increases in octahedral

shear strain with time, with only minute changes in octahedral shear stress.

In all symmetric loading cases, only the magnitudes and not the shapes of

the contours changed with time, as expected. For the nonsymmetric ezternal

loading cases, the contour lines for the octahedral shear stress plots were

reduced in magnitude, and redistributed, in order to relieve highly stress-

ed regions. At the same time, the octahedral shear strain plots illus-

trated this rearrangement of the stresses, by marked increases in strain

in these areas.

Experimental data were not available for comparison for either the

load cycling or the multiaxial creep tests. While the analysis is capable

of predicting the composite response due to either of these loading his-

tories, experimental verification would be useful. A series of uniaxial

load cycling tests should be run at various stress levels in order to
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confirm the behavior predicted by the analysis. It would be informative

to compare the amount of creep strain increase per half cycle as predict-

ed by the analysis (Figures 20 and 21) with that of experiment. Multi-

axial creep tests, while being more difficult to run, could be used to

confirm the amount of creep strain predicted (see Figures 22 through 24)

by the analysis.

An assumption was made in the beginning of this study concerning the

coupling between multiaxial applied stresses. Specifically, this assump-

tion was that the only coupling between multiaxial stresses was due

entirely to Poisson effects. By performing multiaxial creep tests, the

validity of this assumption could be evaluated. It is felt that this was

a good assmption due to the excellent correlation between the predictions

and experiment obtained in the uniaxial loading cases. Although the com-

posite is loaded uniaxially, the matrix is in a very complicated triaxial

state of stress. Thus, the multiaxial stress response of the epoxy is

actually being tested.

Verification of the changes in internal stress states for various

cooldown cycles would also be helpful. Such changes are difficult to

measure, however.



CHAPTER VI

SUMMARY AND CONCLUSIONS

The several examples presented in the previous chapter demonstrate

only a few of the many potential applications of the analysis. It would

be possible to combine several of these features, such as multiaxial

cycling, thermal cycling, etc., to model many different situations. How-

ever, the purpose here is to give an indication of the possible uses and

applications of the program. As mentioned previously, experimental veri-

fication of these capabilities would be helpful. Such verification would

allow one to use the finite element program with assurance that predic-

tions of complicated hygrothermal and/or loading histories were correct.

In summary, the analysis is capable of modeling any unidirectional

composite subjected to longitudinal and/or transverse normal and/or hygro-

thermal loadings. A finite element computer program is used to model the

composite. The constituent material parameters, which are functions of

temperature, moisture, and time, are input to the program through two

subroutines. Thus, material properties can readily be changed. The

finite element analysis used in the computer program is based upon a dis-

placement formulation, constant strain triangular elements with three

degrees of freedom being used. The analysis is pseudo-three-dimensional

in nature, utilizing the conditions for generalized plane strain. Non-

linear (elastoplastic) material behavior is included by means of the

tangent modulus method. While this program is incremental in nature, and

requires the use of several steps to load the composite into the non-
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linear range, it can readily model matrix materials with "flat" stress-

strain curves, such as aluminum. For example, the modeling of a boron/

aluminum composite would present no difficulty.

Viscoelastic behavior is incorporated into the analysis by using

nonlinear constitutive equations developed by Schapery [8]. Creep strains

are treated as initial strains and are calculated by linearly approxi-

mating the value for the creep compliance over a time increment. Thus,

it is necessary for these increments to be small when the value of the

creep compliance is changing rapidly. While uniaxial loads produce com-

plicated triaxial stress states in the composite, it is assumed that the

only coupling between these multiaxial stresses in the material is due

to Poisson effects. It is possible to include higher order coupling

effects between multiaxial stresses; however, this complication has been

neglected in the current analysis. Also, Poisson's ratio has been assum-

ed to be time-independent or at most a very weak function of time. The

validity of this assumption has been demonstrated by several investiga-

tors [12,16,17]. By making use of it, the constitutive equations are

simplified immensely (see Appendix A).

The present analysis solves problems which involve changes of stress,

temperature, and moisture content with time as a series of step loadings.

That is, no increments of load, temperature, or moisture are permitted

during a time increment. However, increments of load, temperature, and/

or moisture may be applied simultaneously using a time-independent incre-

ment. Thus, a ramp loading must be simulated, for example, by a series

of step loads. This could become inefficient as the number of steps

grew large, due to the nature of the program. As explained before, each
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successive step load requires two additional contributions of strain to

be solved for. This is due to the nonlinear time-dependence which the

matrix material displays.

In Chapter III, the conditions for linear viscoelastic behavior

were discussed and a test for determining whether a material is linear

or nonlinear was described. While most materials display some linear

behavior at low stresses and temperatures, these same materials are

usually quite nonlinear at higher values of stress and temperature. The

transition values of stress and temperature (and for polymer-matrix com-

posites, moisture) are different for each material and must be determined

by experiment.

The nonlinear viscoelastic parameters for the matrix material which

are input to the analysis can be determined by means of a series of creep-

recovery tests at different stress levels, as demonstrated in Chapter IV.

To include the effects of temperature and moisture, a series of creep-

recovery tests at various temperatures and moisture content.s must be run.

Reduction of the experimental data can be achieved by means of simple

graphical techniques.

In all of the examples presented in Chapter V, the failure criterion

(present in the existing micromechanics computer program) was ignored.

Since failure is an important criterion in many designs, this feature

could prove very useful. First failure, as currently predicted by the

analysis, does not always mean that a composite has failed, however.

Many composites continue to carry load long after the matrix has exper-

ienced many microcracks. For this reason, crack propagation should be

included in future analyses. The basic micromechanics program has been
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modified by Murphy and Adams [30] to include crack propagation. Thus,

this capability could easily be incorporated into the present analysis.

Other future considerations might include the addition of shear

loading into the analysis. Currently, work is underway to include this

capability [31] into a separate micromechanics program. By including

this type of loading, all time-dependent parameters necessary for use

in a laminate analysis may be determined.

A 3-D finite element laminate analysis has recently been developed

by Monib [32]. The program uses advanced storage and computing techni-

ques which make it ideal for use on most any computer system. While it

does not include viscoelastic behavior at this time, it could easily be

modified to handle such effects. This analysis could then be used to

predict the viscoelastic response of any laminate desired, for ultimate

use in the design of a specific component.

An important feature of the analysis and associated computer pro-

gram developed in the present study is that only constituent material

properties need to be evaluated. This avoids the difficulty of having

to evaluate the time-dependent parameters of all fiber-matrix combin-

ations. Usually only matrix materials need to be tested for time-depend-

ence since most fibers do not show (or show very little) viscoelastic

behavior. Thus, a designer can model the time-dependent behavior of

many different types of composite systems with only a small amount of

experimental data. This was demonstrated in Chapter V for glass/epoxy

and graphite/epoxy composites. Here, only the epoxy had to be tested

in order to determine the viscoelastic response of two different

composites.
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In general, the results obtained for uniaxial loading compare very

well with the experimental data available. Comparisons with the data

generated by Irion [24] proved the analysis to be within experimental

error. While only a limited amount of data was available for comparison,

it is felt that future comparisons will be equally accurate. The analy-

sis is capable of modeling almost any type of loading history desired

since all stress components are accounted for individually. Also, it

has been shown that it is possible to determine an ideal curing cycle

for a unidirectional composite, or the internal stress state of a com-

posite after any curing cycle, using the present analysis. Any type

of thermal or moisture history can be modeled to determine the effects

of environmental exposure on a composite. Th. s can be useful in de-

termining whether a particular component has suffered any degradation

during this period. Combinations of mechanical and environmental load-

ings can also be modeled using the program to determine if the environ-

ment intensifies or relieves the internal stresses in the composite.

Thus, it is clear that the analysis and associated computer program of

the present study are ideal for determining the time-dependent stress

state and overall response of any unidirectional composite under many

situations.
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APPENDIX A

EVALUATION OF THE CONSTITUTIVE EQUATIONS

Single Step Input

For an isotropic material under isothermal conditions and loaded

uniaxially, the constitutive equation is given by Eq. (4) of Chapter

III as

e(t) - g0D0oa(t) + g1  AD(-') d[g 2a(t)] di' (4)5:-. di '

where reduced time is defined by Eqs. (5)

t T'
dt' and dt' (5)
a. ana o (5

0  0

Since the term ao is a function of stress (and possibly of temperature

and moisture also), and since this parameter is required to be constant

throughout the time increment, it may be brought outside of the integral.

First consider the term ] in Eq. (4). If a body is sub-
dT'

jected to the loading shown in Figure A-l, the stress history may be

written in terms of the unit step function [33].

Let

a(t) - oaU(i'-a) (A-1)

where T' is the variable of integration, a is the time at which the load

is applied, and the unit step function is defined as [331

(o for T'<a

U(T'-a) f (A-2)
(lfor T >a•



84

0t

a'a
CA

time, t

Figure A-i. Plot of stress versus time for a single-step input

Remembering that g2 is constant over time, and substituting Eq. (A-i),

we can write

d[g2 0(t)]. gd NaU (T'-a)]I (A-3)

dT' 2 T

Since as is also constant over time, and recognizing that the derivative

of the unit step function is the Dirac delta function [33], Eq. (A-3)

becomes

d~g2o(t)]

dT' g2'aS(T'-a) (A-4)

Evaluating the reduced time terms (Eqs. 5) we get

t dt' to t I T and t' '

0 0 0 0 (A-5)

Substituting Eqs. (A-4) and (A-5) into Eq. (4) we get

C(t) ag 0Do 8U(T'-a) + g, t AD(t-T)g a S(T'-a)dT' (A-6)



85

Upon integration, the constitutive equation becomes

e(t) g0D0Oa + (A-7)

for all t>ta. Note that the time-dependent portion of the compliance is

a function of the ratio of (t-ta) and ao , which is reduced time.

Multiple Step Inputs

A slightly more complicated case than that just presented is the

two-step input shown in Figure A-2.

[ b

a

t
a

time, t

Figure A-2. Plot of stress versus time for a two-step input

In order to write a constitutive equation for t>tas we must consider the

loading as consisting of three parts: + aa applied at time t-0 and re-

maining unchanged, -a. applied at time t-ta and remaining unchanged there-

after throughout the remaining lifetime, and +ob applied at time t-ta

and also remaining unchanged thereafter throughout the remaining lifetime.

The corresponding constitutive equation using Eq. (4) is
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e(t) gavD0 (oa) + gbj 8D('Y-T')g2(Ca)6(T')dT' +

goDo(-oa) + g, AD(f-T')g'(-oa)6(r'-a)dT' + (A-8)
0-

bD (0b) + gb 
bgo 01 ub6T-d'

0-

where the substitution defined by Eq. (A-4) has been made. Note that

the superscripts on the terms go, gI, and g2 denote which stress level

they are associated with. Upon integration and cancelling terms, Eq.

(A-8) becomes

f(t) glAD(T-T1)g2oa - gIAD(T-T2)ga, +Pg~c 2 a(A-9)

b bb
g0D0o + AD(T-T)Ob

where the reduced time T is

ta dt' t dt' ta  + t-ta

+ (A-lOa)
a b b

0  ta a0  a0

TV T dt' T 0(Alb
( t (A-0b)

tadt' +( dt'

2a ab
o ta

(A-lOc)
ta T-ta ta

+ b a
a, aO  a

a
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The equations (A-10b) and (A-10c) have been evaluated at T'O and

T'-ta respectively, corresponding to the times at which each load was

applied. This is because the delta function in the intergrand in Eq.

(A-8) is zero everywhere except at values of T' corresponding to the

load application.

Substituting Eqs. (A-10) into Eq. (A-9) we get

e(t) M h ga AI ta +t-tal1 hs_9bga I ~t-taa +Sga a 
a 0 J 12 a(A-l1)

b)a b gb AD t-ta,
g0DGb + g gb AD a j'b

a

After rearranging terms, Eq. (A-11) becomes

C(t) - gDb g+ bgbD t-tab -

0D00b +1
(A-12)

ha I t-tal b a ta tta

gg2D a + g gDI - + -
1 2 -- a b a-

Sa. Iaa a.

Recovery

If Eq. (A-12) is used where ab is equal to zero, as shown by

Figure A-3, then the constitutive equation for the recovery portion of

the creep curve can be written as

b a a5 ttaj - bgat-tal (A-13)1r(t) Ma b . g+AD b a-
a. a. 1 2  a.

When stresses are zero during the recovery portion of the creep curve,

b b bthe constants g,, 920 and a. are all equal to one, indicating that the

material behavior is linear viscoelastic. With these substitutions,
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0!
t

a

@ __ __ ime t
a

time, t

Figure A-3. Plot of stress versus time for a creep-recovery input

Eq. (A-13) becomes

cr(t) 2 a + t-ta) - AD(t-ta)]oa. (A-14)

aa

While it is possible to represent the transient creep compliance ADO

by almost any function, it is convenient to use a power law in time,

AD() = C n . (A-15)

Substitution of Eq. (A-15) into Eq. (A-14) gives

a an

r(t) g + t-ta) - (t-ta) n  (A-16)
2L a

Letting

X - t-ta (A-17)

ta

dropping the superscript a, substituting Eq. (A-17) into Eq. (A-16), and

rearranging we get

n Xn) (aoX)n,, (A-18)
Cr~t) -Cg 2t (la 0a -Y (a~~ a .A-
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The amount of transient or creep strain Just prior to the removal of the

load at time ta is defined as

n
Aea = (ta) c 9 192 C(ta) aa (A-19)

where c is the initial or time-independent strain. Substituting Eq.

(A-19) into Eq. (A-18) we get

Et)=Aca [(l+ )n -(a 0A)n,. (A-20)
91



APPENDIX B

COMPUTER PROGRAM

The computer program, originally developed by Miller and Adams [141,

uses simplex triangular elements and is based upon generalized plane

strain conditions, vhtch permit a pseudo-three-dimensional analysis.

Nonlinear (elastoplastic) material behavior, modeled by Von Mises yield

criterion and the Prandtl-Reuss flow rule, is incorporated by means of

the tangent modulus method. This technique allows for the modeling of

matrix materials which have "flat" or "nearly flat" stress-strain curves,

such as aluminum.

Temperature- and moisture-induced strains are included as are ma-

terial properties which are a function of temperature and moisture. The

efficiency of the current micromechanics computer program lies within a

method which allows all external tractions to be applied and solved for

simultaneously. This method also permits changes in temperature and

moisture to be applied simultaneously with changes in load during the

same increment. This avoids the problem of having to solve for each

loading component independently and using superposition to obtain the

total solution.

Time-dependence, incorporated by means of initial strains [15],

uses the constitutive equations presented in Chapter III. Application

of any load, temperature, or moisture increments must occur in the time-

independent steps. That is, no changes in load, temperature, or moisture

are allowed to occur during a time increment.
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A block diagram of the computer program is shown in Figure B-i.

When this diagram is compared to the one in Reference [14], the only

significant difference is the additional subroutine which contains the

viscoelastic parameters. This feature allows the user to merely sub-

stitute a modified subroutine in order to simulate a different visco-

elastic matrix material.

The program previously required the modification of another sub-

routine in order to model a different matrix and/or fiber in a composite.

With the addition of time-dependence, there are now two subroutines

which require modification in order to model a different composite

material.

A typical computer run involves initialization of several parameters

in the subroutine MAIN. Next, mesh data which includes node point

coordinates, element numbers, element material types, and the node boun-

dary conditions, are read into the program by subroutine GDATA. The

grid used in the program is set up for 40 percent fiber volume; however,

subroutine MADJ automatically recalculates the node point coordinates for

any fiber volume desired. Subroutine MAIN then calls subroutine LOAD,

which reads the first increment of temperature, moisture, or load. This

subroutine in turn calls FORMK, which assembles the global stiffness

matrix using the elastic material properties subroutine ELPROP if the

element is in the linear range, or the plastic material properties sub-

routine PLPROP if the element is in the nonlinear (elastoplastic) range.

For the first increment, the behavior is automatically assumed to be

linear. Should a succeeding increment be a time increment, the elastic

material properties subroutine ELPROP is called (to get certain time-
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MAIN

An administrative program which calls the working

subroutines in proper order. Reads administrativ

data, i.e., number of load increments, initial

temperature and moisture states. Also initial-

izes random access files for time-dependent

histories.

GDATA

Reads the finite element grid properties, i.e.,

node point coordinates, element-node-point

associations, and element material type. Calls

matrix adjusting routine if necessary. Also

calls matrix plotting routine.

MADJ MESH

Recalculates node point Plots the finite

coordinates if requested element mesh after

fiber volume is different MADJ has been

than 40 percent. called.

LOAD

Reads external load increments, temperature

and moisture changes, and time increments.

Calls FORMK and RESL.

Figure B-i. Analysis Procedure Flowchart

(continued on the following page)
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FORMK

Calls subroutines which calculate element stiffness

matrices. Assembles the element stiffness matrices

into global form. Also applies boundary conditions

read in GDATA.

PLAST
PLASTElement

Developes the stiff- in elastic

ness matrix for the material region or

element, no time increment

PLPRPye

STIFT2
Calculates parameters

needed in PLAST for Calls ELPROP. Calcu-

nonlinear (elasto- lates element stiff-
plastic) properties. ness matrix for time-

independent increment

Calls VISCO if time

VISCO increment is

Calculates element stiff- applied.

ness matrix for time-

dependent increment. Also
ELPROP

figures the "average"E

creep compliance for Calculates the elas-

an increment, tic time-independent

material properties

as a function of

moisture and temp-

erature.

Figure B-i. (continued) Analysis Procedure Flowchart

(continued on the following page)
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RESL

Calculates the hygrothermal dilational or time-

dependent, strain-induced force vectors.

SOLVE

Manipulates the global stiffness matrix for the

given boundary conditions. Solves the global

matrix equation for the node point displacements.

STRESS

Calculates the incremental stress in each element.

Calculates the principal stresses and octahedral

shear stress. Checks for multistep load. Returns

to LOAD if necessary to solve for additional

loading histories. Accumulates the incremental

stresses and checks for element failure.

Determines if an element has yielded. If so,

sets flag for that element so that its

tangent modulus may be determined next increment.

Element

failed or maximum

number of loading Stop

increments yes

C Return to MAIN

for next increment

Figure B-1. (continued) Analysis Procedure Flowchart
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independent parameters) and then the time-dependent materials property

subroutine VISCO is called. This subroutine calculates the elemental

stiffness matrix (Eq. 14) and the incremental creep compliance.

When formulation of the global stiffness matrix is complete, sub-

routine RESL calculates incremental node point forces (Eq. 15) for tem-

perature, moisture or time increments. Inversion of the global stiffness

matrix and solution for the node displacements occurs in subroutine

SOLVE. The incremental stresses are then calculated in subroutine

STRESS. This subroutine also calculates the octahedral shear stress

and strain and checks for yielding and/or failure of an element. If no

elements have failed, the program returns to MAIN for another increment.

This process is repeated until all increments are exhausted, or an ele-

ment fails, at which time the program automatically terminates.

In order to model a multistep input such as shown in Figure 6, the

history of each load step must be kept track of independently. A scheme

using a random access file technique was developed for this purpose. By

using this method, large arrays necessary for storage of each stress

history were not needed. Thus, it was only necessary to increase the

core requirements of the previous micromechanics program in Reference

[14] by some two percent.

An example of this scheme is as follows. Initial load, temperature,

and moisture changes which occur in several time-independent increments

produce certain stresses in each element. As these increments are

applied, the elemental stresses are accumulated and stored in a file

called FILE ONE. When the first time increment is applied, the contents

of FILE ONE are copied into another file called FILE FIFTY. This file
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is saved for later use when the load, temperature or moisture is again

incremented. As succeeding time increments are applied, incremental

stresses due to creep (if any) are accumulated in FILE ONE. At this

point, the stresses in FILE ONE are the total stresses in each element.

When more increments of load, temperature or moisture are applied, sim-

ulating a step input, the stresses which are contained in FILE FIFTY are

copied into another file called FILE TWO, with a change of sign on each

stress. This serves to simulate the pseudo application of a -va stress,

as discussed relative to multistep loadings in Chapter III. At the

same time, the contents of FILE FIFTY are copied into another file called

FILE THREE. As the time-independent increments of load, temperature, or

moisture are applied, the stresses are accumulated in FILE THREE. When

the next time increment is applied, the contents of FILE THREE are copied

over the contents of FILE FIFTY. Thus, for each element an initial "+a

stress history" beginning at time t=O corresponding to FILE ONE, a "-a

stress history" beginning at time tfta corresponding to FILE TWO, and a

"+ob stress history" beginning at time t-ta corresponding to FILE THREE

is recorded. A third step load in time similar to that shown in Figure

6 at say, time t-tb would require two more files, FILE FOUR for a "-ob

stress history" occuring at time t-tb, and FILE FIVE for a "+cc stress

history" occuring at time t-tb. Similarly, extra step loads would re-

quire the addition of two files per step.

The solution for a time increment for times ta<t<tb in Figure 6

requires incremental creep stresses to be calculated for each stress

history; in this case there are three. These incremental stresses are

accumulated in their respective files and all files, i.e., ONE, TWO, and
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THREE are summed at the end of an inrement to give the total stress for

each element. This procedure is then repeated for additional increments.



APPENDIX C

EXPERIMENTAL RESULTS

The following Figures (C-i through C-10) are actual computer plots

of creep-recovery data for Hercules 3501-6 epoxy resin. All plots at

each stress level were similar and for brevity only two of the three plots

for each stress level tested are shown. While the data are relatively

smooth for the higher stress levels, they are quite irregular for the

lower values of applied stress. This is due primarily to the lower out-

put of strain shown by the specimens subjected to a lower stress. A

smaller output requires the extensometer to be set on a more sensitive

scale and consequently, the extensometer is also more sensitive to

voltage fluctuations, noise levels, etc. The plots also appear quite

irregular due to the limited number of data points taken. In these plots,

a straight line was used to connect the data points. During the data

reduction described in Chapter IV, a smooth curve should be drawn between

these points.

Figures C-l through C-15 are plots of the constitutive equations

using the parameters go, g1 , g2, and a( calculated from the creep-recov-

ery data. The experimental creep data sampled by the computer for all

three tests are indicated by the stars. The stress level given in the

upper right-hand corner is the average of the applied stress for all

three tests. There is excellent agreement between experiment and the

constitutive equations except at the 15,000 psi stress level. By
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examining Figure 10 in Chapter IV, the reason for this discrepancy is

evident. The value for g0D0 obtained through data reduction and the

value predicted by the curve in this plot are not the same, and since the

constitutive equation plotted here uses the value predicted by the curve,

there will obviously be some disagreement. The reason for this discrep-

ancy in Figure 10 is not known at this time; however, the experimental

data are suspect, as discussed in Chapter IV.
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Figure C-3. Experimental creep-recovery data for Hercules 3501-6 epoxy
resin subject to a 6000 psi uniaxial compressive stress.
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Figure C-4. Experimental creep-recovery data for Hercules 3501-6 epoxy
resin subject to a 6000 psi uniaxial compressive stress.
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Figure C-7. Experimental creep-recovery data for Hercules 3501-6 epoxy
resin subject to a 16,000 psi uniaxial compressive stress.
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Figure C-8. Experimental creep-recovery data for Hercules 3501-6 epoxy
resin subject to a 16,000 psi uniaxial compressive stress.
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APPENDIX D

NUMERICAL RESULTS

In Figures D-1 through D-6, predictions made for the Hercules 3501-

6 epoxy resin using the computer program are plotted with the data which

were input to the program. The predictions are represented by the sym-

bols (squares) while the lines show the actual (input) response. The

input response was obtained by using the constitutive equations and a

hand calculator. Figures D-2, D-4, and D-6 are replotted from Figures

D-l, D-3, and D-5, respectively, with the scales enlarged. This helps

to magnify any errors present, which incidently are less than 6 percent

in all cases.

Figures D-7 through D-18 are octahedral shear stress and strain,

and normal and tangential interface stress plots for various examples

presented in Chapter V. It should be mentioned that the octahedral

shear stress plots have been "normalized" by dividing the contour values

by the octahedral shear yield stress. This means that contour values

greater than one indicate that the region has yielded. The octahedral

shear yield stress is a function of temperature and moisture and was de-

termined to be 5397 psi [27] for all plots shown except for Figures

D-12a and D-12c. In these figures the temperature is 99°C, which is

different from all other models where the temperature is 21°C. In this

case the octahedral shear stress yield value is 2813 psi [27].

............. -------------- ............
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ISA I
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.27 177

.38-70 .

70
.59-865

a) Octahedral shear stress b) Octahedral shear strain
elapsed time: 0.0 hours elapsed time: 0.0 hours

(immedlately after cooldown to 21fC)

.458 4"194 6..1.

the 177°C cure temperature to 21°C, followed by a 140
hour relaxation period, and then a -20 ksi stress for
another 140 hours.
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4.6

.67-
47- 3.,

e) Octahedral shear stress f) Octahedral shear strain
elapsed time: 2.1 hours elapsed time: 2.1 hours

3 2 16.7  1S .6 \

.3 .14 20. 
7.3 4.8

.231-

IL S91
g) Octahedral shear stress h) Octahedral shear strain

elapsed time: 140 hours elapsed time: 140 hours

Figure D-7. (continued) Octahedral shear stress (normalized) and
octahedral shear strain plots for glass/epoxy subjected
to a cooldown from the 177*C cure temperature to 21*C,
followed by a 140 hour relaxation period, and then a
-20 ksi stress for another 140 hours.
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i5

i) Octahedral shear stress 
j) Octahedral shear strain

elapsed time: 140 hours elapsed time: 140 hours

(immediately after application of 
ox = -20 ks)

k) Octahedral shear stress 
) Octahedral shear strain

elapsed time: 280 hours elapsed time: 280 hours

Figure D-7. (continued) Octahedral shear stress (normalized) 
and

octahedral shear strain plots for 
glass/epoxy subjected

to a cooldown frm the 177oC cure 
temperature to 21°C,

folloed by a 140 hour relaxation period, and then a

-20 ksi stress for another 140 hours.
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-6 0 6 -3 0 3a) Normal stresses (ksi) b) Shear stresses (ksi)
elapsed time: 0.0 hours elapsed time: 0.0 hours

(immediately after cooldown to 21*C)

IJ

-6 0 6 -3 0 3
c) Normal stresses (ksi) d) Shear stresses (ksi)

elapsed time: 140 hours elapsed time: 140 hours

Figure D-8. Interface stresses for glass/epoxy subjected to a cool-
down from the 177*C cure temperature to 21'C followed by
a 140 hour relaxation period, and then a -20 ksi stress
for another 140 hours.
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-43 0 43 -12 0 12
d) Normal stresses (ksi) e) Shear stresses (ksi)

elapsed time: 140 hours elapsed time: 140 hours

(immediately after application of x= -20 ksi)

-43 0 43 -12 0 12
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Figure D-8. (continued) Interface stresses for glass/epoxy subjected
to a cooldown from the 177*C cure temperature to 21*C
followed by a 140 hour relaxation period, and then a -20
ksi stress for another 140 hours.
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Figure D-9. Octahedral shear stress (normalized) and octahedral shear
strain plots for glass/epoxy subjected to a -20 ksi stress
for 140 hours (no prior temperature history).
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Figure D-1O. Octahedral shear stress (normalized) and octahedral
shear strain plots for a 50 percent fiber volume glass/
epoxy composite subjected to a -20 kal stress for 140
hours (no prior temperature history).
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Figure D-11. Interface stresses for a 50 percent fiber volume glass/
epoxy composite subjected to a -20 ksi stress for 140
hours (no prior temperature history).
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a) Octahedral shear stress b) Octahedral shear strain
elapsed time: 0.0 hours elapsed time: 0.0 hours

(immediately after cooldown to 99*C)

Figure D-12. Octahedral shear stress (normalized) and octahedral shearstrain plots for glass6epoxy subjected to a cooldow2 from

the 177°C cure temperature to 99°C, a 2.1 hours relaxation
period, further cool from 99°C to 21"C, and another 2.1
hour relaxation period.
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e) Octahedral shear stress f) Octahedral shear strain
elapsed time: 2.1 hours elapsed time: 2.1 hours
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Figure D-12. (continued) Octahedral shear stress (normalized) andoctahedr31 shear strain plots for glass/epoxy subjectedto a cooldown from the l770C cure temperature to 99C,a 2.1 hour relaxation period, further cool from 99C to21C, and another 2.1 hour relaxation period.
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elapsed time: 2.1 hours elapsed time: 2.1 hours

Figure D-13. Octahedral shear stress (noralzed) and octahedral

shear strain plots for glass/epoxy subjected to a +20
ksi stress for 2.1 hours, a -20 ksi 

stress for 2.1 hours,

and a +20 ksi stress for another 2.1 hours (no prior

temperature history).
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e) Octahedral shear stress f) Octahedral shear strain
elapsed time: 2.1 hours elapsed time: 2.1 hours

(immediately after stress reversal, to a= -20 ksi)

g) Octahedral shear stress h1) Octahedral shear strain
elapsed time: 4.2 hours elapsed time: 4.2 hours

Figure D-13. (continued) Octahedral shear stress (normalized) and
octahedral shear strain plots for glass/epoxy subjectedto a +20 ksi stress for 2.1 hours, a2-20 ks stress for
2.1 hours, and a +-20 ksi 5tress for another 2.1 hours
(no prior temperature history).
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Figure D-13. (continued) Octahedral shear stress (normalized) and

octahedral shear strain plots for glass/epoxy sublected
to a +20 ksi stress for 2.1 hours, and a -20 ksi stress
for 2.1 hours, and a +20 ksi stress for another 2.1
hours (no prior temperature history).
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Figure D-14. Interface stresses for glass/epoxy subjected to a +20
ksi stress for 2.1 hours, a -20 ksi stress for 2.1 hours,
and a +20 ksi stress for another 2.1 hours (no prior
temperature history).
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Figure D-14. (continued) Interface stresses for glass/epoxy subjected
to a +20 ksi stress for 2.1 hours, a -20 ksi stress
for 2.1 hours, and a +20 kst stress for another 2.1 hours
(no prior temperature history).
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Figure D-14. (continued) Interface stresses for glass/epoxy subject-
ed to a +20 ksi stress for 2.1 hours, a -20 ksi stress
for 2.1 hours, and a +20 ksi stress for another 2.1
hours (no prior temperature history).
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Figure D-15. Octahedral shear stress (normalized) and octahedral
shear strain plots for glass/epoxy subjected to a 5 ksl
stress in the x-direction and a 5 ksi stress in the y-
direction (no prior temperature history).
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a) Octahedral shear stress b) Octahedral shear strain
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c) Octahedral shear stress d) Octahedral shear strain
elapsed time: 140 hours elapsed time: 140 hours

Figure D-16. Octahedral shear stress (normalized) and octahedral
shear strain plots for glass/epoxy subjected to a 15 ksl
stress in the x-direction and a 5 ksi stress in the y-
direction (no prior temperature history).
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Figure D-17. Interface stresses for glass/epoxy subjected to a 5 ksl

stress in the x-direction and a 5 ksi stress in the y-
direction (no prior temperature history).
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Figure D-18. Interface stresseR for glass/epoxy subjected to a 15 ksi
stress in the x-direct ion and a 5 ksi stress in the y-
direction (no prior temperature history).


